15 research outputs found

    On the Utility of Model Learning in HRI

    Get PDF
    Fundamental to robotics is the debate between model-based and model-free learning: should the robot build an explicit model of the world, or learn a policy directly? In the context of HRI, part of the world to be modeled is the human. One option is for the robot to treat the human as a black box and learn a policy for how they act directly. But it can also model the human as an agent, and rely on a “theory of mind” to guide or bias the learning (grey box). We contribute a characterization of the performance of these methods under the optimistic case of having an ideal theory of mind, as well as under different scenarios in which the assumptions behind the robot's theory of mind for the human are wrong, as they inevitably will be in practice. We find that there is a significant sample complexity advantage to theory of mind methods and that they are more robust to covariate shift, but that when enough interaction data is available, black box approaches eventually dominate

    Inverse Reinforcement Learning without Reinforcement Learning

    Full text link
    Inverse Reinforcement Learning (IRL) is a powerful set of techniques for imitation learning that aims to learn a reward function that rationalizes expert demonstrations. Unfortunately, traditional IRL methods suffer from a computational weakness: they require repeatedly solving a hard reinforcement learning (RL) problem as a subroutine. This is counter-intuitive from the viewpoint of reductions: we have reduced the easier problem of imitation learning to repeatedly solving the harder problem of RL. Another thread of work has proved that access to the side-information of the distribution of states where a strong policy spends time can dramatically reduce the sample and computational complexities of solving an RL problem. In this work, we demonstrate for the first time a more informed imitation learning reduction where we utilize the state distribution of the expert to alleviate the global exploration component of the RL subroutine, providing an exponential speedup in theory. In practice, we find that we are able to significantly speed up the prior art on continuous control tasks

    Sequence Model Imitation Learning with Unobserved Contexts

    Full text link
    We consider imitation learning problems where the expert has access to a per-episode context that is hidden from the learner, both in the demonstrations and at test-time. While the learner might not be able to accurately reproduce expert behavior early on in an episode, by considering the entire history of states and actions, they might be able to eventually identify the context and act as the expert would. We prove that on-policy imitation learning algorithms (with or without access to a queryable expert) are better equipped to handle these sorts of asymptotically realizable problems than off-policy methods and are able to avoid the latching behavior (naive repetition of past actions) that plagues the latter. We conduct experiments in a toy bandit domain that show that there exist sharp phase transitions of whether off-policy approaches are able to match expert performance asymptotically, in contrast to the uniformly good performance of on-policy approaches. We demonstrate that on several continuous control tasks, on-policy approaches are able to use history to identify the context while off-policy approaches actually perform worse when given access to history

    Learning Shared Safety Constraints from Multi-task Demonstrations

    Full text link
    Regardless of the particular task we want them to perform in an environment, there are often shared safety constraints we want our agents to respect. For example, regardless of whether it is making a sandwich or clearing the table, a kitchen robot should not break a plate. Manually specifying such a constraint can be both time-consuming and error-prone. We show how to learn constraints from expert demonstrations of safe task completion by extending inverse reinforcement learning (IRL) techniques to the space of constraints. Intuitively, we learn constraints that forbid highly rewarding behavior that the expert could have taken but chose not to. Unfortunately, the constraint learning problem is rather ill-posed and typically leads to overly conservative constraints that forbid all behavior that the expert did not take. We counter this by leveraging diverse demonstrations that naturally occur in multi-task settings to learn a tighter set of constraints. We validate our method with simulation experiments on high-dimensional continuous control tasks

    On the Utility of Model Learning in HRI

    Get PDF
    Fundamental to robotics is the debate between model-based and model-free learning: should the robot build an explicit model of the world, or learn a policy directly? In the context of HRI, part of the world to be modeled is the human. One option is for the robot to treat the human as a black box and learn a policy for how they act directly. But it can also model the human as an agent, and rely on a “theory of mind” to guide or bias the learning (grey box). We contribute a characterization of the performance of these methods under the optimistic case of having an ideal theory of mind, as well as under different scenarios in which the assumptions behind the robot's theory of mind for the human are wrong, as they inevitably will be in practice. We find that there is a significant sample complexity advantage to theory of mind methods and that they are more robust to covariate shift, but that when enough interaction data is available, black box approaches eventually dominate
    corecore